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Abstract

We focus on partially supervised instance segmentation where only a subset of

categories are mask-annotated (seen) and the model is expected to generalize

to unseen categories for which only box annotations are provided to eliminate

laborious mask annotations. Many recent studies train a class-agnostic segmen-

tation network to distinguish foreground areas in each proposal. However, class-

agnostic models behave poorly in complex contexts when the foreground object

overlaps with other irreverent objects. Identifying specific object categories is

simpler than distinguishing foreground from background since the definition of

the foreground is ambiguous even for a human. However, training class-specific

model is unfeasible under the partially supervised setting since the mask an-

notations of unseen categories are absent during training. To overcome this

issue, we put forward a teacher-student architecture where the teacher learns

general yet comprehensive knowledge and the students, guided by the teacher,

delve deeper into specific categories. Concretely, the teacher learns to segment

foreground from proposals and the student is devoted to segmenting objects of

specific categories. Extensive experiments on the challenging COCO dataset

demonstrate our method consistently improve the performance of several recent

state-of-the-art methods for the partially setting. Especially, for overlapped ob-
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Figure 1: (a) standalone rackets and (b) rackets overlapped with human body. Class-agnostic

partially supervised instance segmentation model performs better on standalone objects than

on overlapped objects

jects, our method significantly outperforms the competitors with a clear margin,

demonstrating the superiority of our method.
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1. Introduction

Instance segmentation is a fundamental task in computer vision and au-

tonomous driving. In recent years, the performance of instance segmentation

has been improved to an unprecedented level since the use of convolutional neu-

ral networks (CNNs) [1, 2, 3, 4, 5]. However, CNNs require a large amount of5

accurate annotated samples to achieve good performance and avoid overfitting.

Annotating object masks for instance segmentation is notoriously laborious and

the data becomes a bottleneck to the scalization of deep instance segmentation

models. Partially supervised instance segmentation [6] aims at learning from

a subset of mask-annotated (seen) categories and then generalizing to novel10

(unseen) categories which has only box-level annotations. Since it significantly

reduces the workload of data annotation and improves the efficiency of instance

segmentation, partially supervised instance segmentation has become a hot re-

search topic in recent years [7, 8, 6, 9, 10].

Hu et al. [7] first introduces the prototype concept of partially supervised in-15
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stance segmentation. They first build a mapping from box classification weights

to mask segmentation weights. Then, a model trained on a subset of categories

can automatically generate mask segmentation parameters on novel categories

with the mapping function. Many follow-up works solve this problem with

class-agnostic segmentation networks. Under the class-agnostic setting, cate-20

gories degenerate to foreground and background so that missing categories is

no longer a problem during training. CPMask [8] learns shared commonali-

ties, e.g., boundary or pixel affinities, that can be generalized from seen cate-

gories to unseen categories. OPMask [9] uses the class activation maps from box

head to enhance localization capacity features for mask prediction. Recently,25

Zhou et al. [6] propose to learn salient maps in an instance and then iteratively

propagate the salient maps to the whole object with a message passing module.

The class-agnostic methods overcome the category-missing problem by de-

generating categories into foreground and background. However, the ‘fore-

ground’ in class-agnostic models is sometimes ambiguous, especially when there30

are overlapped objects. For example, there are many objects overlapping with

other things – countable objects such as people, animals, tools, as shown in Fig. 1

(a). Under such condition, the model is difficult to segment the correct areas, as

shown in Fig. 1 (b). The main issue is that the definition of ‘foreground’ is am-

biguous and the class-agnostic model cannot distinguish foreground object in the35

current proposal from objects of other categories that are possibly foreground

in a different proposal. Recent empirical studies show that the class-specific

methods outperform class-agnostic methods even on fully-supervised instance

segmentation [11]. Directly training a class-specific network is unfeasible since

the missing of categories. Hu et al. [7] train a ‘weight transfer function’ to40

map box classification weight to segmentation weight. However, the transferred

segmentation weight presents unsatisfactory performance on unseen categories.

In this paper, we propose a teacher-student architecture where the teacher

learns general yet comprehensive knowledge, and the students delve deeper into

specific areas. Concretely, we use a class-agnostic head as the teacher to learn a45

general distinction between foreground and background. Guided by the teacher,
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a class-specific head is employed as the student to learn information specific to

each category. The teacher is trained with only seen categories and its pre-

dictions on unseen categories are used as supervision to a specific student ac-

cording to the class label of the instance. Experimental results on the challeng-50

ing COCO [12] dataset demonstrate that our method consistently outperforms

many recent state-of-the-art methods in terms of segmentation quality on un-

seen categories. Our contributions are summarized as below:

1. We observe that class-agnostic methods for partially supervised instance

segmentation performs poorly due to ambiguous definition of foreground55

for overlapped objects. We analyze that this is because these methods can-

not distinguish the main object from other objects in the same bounding

box.

2. We propose a teacher-student architecture to perform ‘general to class-

specific’ knowledge transfer. The teacher learns general and comprehen-60

sive knowledge about foreground objects while the students in contrast

delve deeper into specific categories, leading to easier learning and better

performance.

3. We apply the proposed method to many recent state-of-the-art approaches

to partially supervised instance segmentation and observe consistent per-65

formance gain on the challenging COCO dataset.

2. Related Work

Instance Segmentation. Instance segmentation is a classical problem in com-

puter vision. Roughly, instance segmentation methods can be divided into two

categories: 1) top-down detection based and 2) bottom-up grouping-based meth-70

ods. Top-down instance segmentation methods [1, 13, 3, 14, 15, 3] extend

the object detection framework, e.g., faster r-cnn [16], with a mask prediction

module. Mask R-CNN [1] extends the Faster R-CNN [16] with a FCN [17]

branch to segment object area in object bounding boxes. FCIS [3] introduces

position-sensetive representations for mask segmentation. Liu et al. [15] add75
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bottom-up path augmentation in addition to the top-down path in FPN [18]

to enrich feature representations. Mask Scoring R-CNN [13] calibrates the mis-

alignment between mask quality and mask score by introducing a submodule to

explicitly predict quality scores. Shang et al. [4] ultlize the instance-level con-

texts to enhance feature representations for instance segmentation. Huang et80

al. [19] use the peak response map from a pretrained classification network for

box-supervised instance segmentation. Yang et al. [20] propose a one-stage

and anchor-free framework for instance segmentation based on boundary point

representations. Xiang et al. [21] improve the segmentation quality with class-

specific semantic feature and instance-specific attributes.85

On the other hand, bottom-up instance segmentation methods first obtain

a pixel-wise semantic segmentation mask over an image and then group pixels

into individual instances. Zhang et al. [22, 23] propose to assign instance labels

based on local patches and integrate the local results with an MRF. [24] pro-

poses the deep watershed algorithm to segmentation pixels into instances. [25]90

learns bound-aware representations. Recently, there are many single-stage in-

stance segmentation methods achieving promising performance in both accuracy

and speed. InstanceFCN [26] and FCIS [3] use a fully-convolutional network [17]

to produce instance-sensitive score maps which contain the relative positions for

each objects instances, and then apply an assembling module to output object95

instances. PolarMask [27] uses rays at constant angle intervals and then de-

scribes the contour of an object using the distance between the center and the

edge of the object. SOLO [28] assigns categories to each pixel within an instance

according to the instance’s location, leading to a simple and fast method for in-

stance segmentation with strong performance. Generally, bottom-up methods100

are faster than top-down methods, but with the sacrifice of performance.

Partially supervised Instance Segmentation. Generalizing instance seg-

mentation models to novel categories with limited or weak annotations are useful

and challenging. In the partially supervised instance segmentaion setting, only

a subset object categories are mask-annotated, all other categories have only105
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box annotations. The model is trained on mask-annotated images and tested

on box-annotated images.

For the past few years, several achievements have been made for partially

supervised instance segmentation [7, 8, 9, 6]. Hu et al. [7] first introduced the

concept of ‘partially supervised instance segmentation. Their method builds110

up a mapping function between the parameters of the box head and the mask

head and therefore generates mask head parameters for unseen categories with

box head weights. CPMask [8] learns the common low-level clues, e.g., edge

and pixel affiliations, from seen categories to enhance performance on unseen

categories. OPMask [9] employs the class activation map (CAM) from the box115

head as a coarse localization for object segmentation inside proposals. Recently,

[6] propose the ‘ShapeProp’ that activates the salient areas in a bounding box

and then propagates the area to the whole instance using an iterative mes-

sage passing module. [29] suggests that using extremely deep mask heads can

significantly improve the performance of partially-supervised instance segmen-120

tation. Wang et al. [30] use pixel-wise contrast learning to improve the feature

representations. Most of them have employed the class-agnostic architecture

that trains foreground/background segmentation network on seen categories

and then transfer to unseen categories [8, 9, 6]. However, it is challenging to

perform binary segmentation under complex contexts where objects are heavily125

overlapped with others and the background is noisy.

3. Observation on Class-agnostic Segmentation

3.1. Performance w.r.t overlaps

Here we quantitatively analyze the impact of object overlaps on the perfor-

mance of class-agnostic segmentation. We experiment with Mask R-CNN [1] on130

the COCO [12] dataset. We train a class-agnostic mask head with voc categories

of the training set, and then test with non-voc categories from the testing set.

We define the overlap of object i as:

Oi = max
j∈I,j 6=i

bi ∩ sj
bi

, (1)
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where b, s are the bounding box and segmentation mask of an object, ∩ denotes

the intersection between two areas. Here we use the intersection between bi and135

sj because the mask annotations of two overlapping objects may not intersect.

The definition in Eq. (1) represents the degree of an object being overlapped by

other objects. Based on the definition in Eq. (1), we calculate the segmentation

performance w.r.t the overlaps.

In Fig. 2, horizontal axis xi means the performance of all objects with over-140

lap xi−1 < O ≤ xi. The results clearly demonstrate that the class-agnostic

model performs better on stand-alone objects and the performance degrades on

overlapped objects.

3.2. Attribution of mis-segmentations

Now we analyze the attribution of mis-segmentations for a class-specific145

model and a class-agnostic model. We count the false positive pixels on the

testing set and attribute them into 3 different cases: background, seen objects

and unseen objects. We use the Mask-rcnn [1] and COCO dataset [12] for

both fully-supervised and partially-supervised experiments. Under the fully-

supervised setting, a class-specific mask head is used. For partially-supervised150

setting, a class-agnostic head is used and the model is supervised with pseudo

masks generated by itself on unseen categories. The statistics are in Fig. 3.

As shown in Fig. 3, with a class-specific head, most of the false positives occur

on the background areas that do not belong to any object. As for the class-
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Figure 2: Segmentation performance w.r.t. object overlaps. The larger the object overlaps,

the lower the performance.
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Figure 3: Attribution of false positive of fully supervised (left) and partially supervised

(right) Mask R-CNN.

agnostic head, more than half of the false positives are on objects. The results155

suggest that the class-agnostic head has difficulty in recognizing foreground

objects from irreverent objects. This motivates us to develop a class-specific

method for partially supervised instance segmentation.
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Figure 4: The overall network architecture of our proposed method. The teacher mask head

(Mt, bottom) and the student mask head (Ms, top) share the same ROI features. Mt is

supervised with seen categories and produces pseudo masks on the unseen categories as the

supervision of Ms. The box branch (top-right) is supervised by samples of all categories.

4. Methodology

In this section, we introduce the proposed method for partially supervised160

instance segmentation.
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We denote the set of categories in a dataset with C, and C = |C| is the

number of classes. We denote S as the seen categories that are mask-annotated,

and C \ S is unseen categories without mask annotations.

4.1. Teacher and student mask heads165

Our method consists of two mask heads: the teacher mask head and the

student head. The teacher head performs binary segmentation in each proposal

to distinguish foreground and background areas. During training, the teacher

mask head is trained only on objects of seen categories and b) the student mask

head performs multi-classification to assign each pixel to a specific category.170

Let x ∈ RD×H×W be the ROI features and Ft, Fs be the teacher and student

mask heads, where D is the dimensionality and H×W are spatial size. Following

many previous works [1, 7, 13], Ft, Fs consist of four convolutions. The outputs

are Mt ∈ RH×W and Ms ∈ RC×H×W are:

Mt = Ft(x)

Ms = Fs(x),
(2)

where C is the number of categories, e.g., C = 80 for COCO dataset.175

Let Wt ∈ RD×1,Ws ∈ RD×C be the weights of the last convolutional layers

in Ft, Fs, respectively. Wt ∈ RD×1 can be trained only with seen categories and

test with unseen categories. However, only |S| of C kernels in Ws ∈ RD×C will

be updated during training under the partially supervised setting, meaning that

class-specific models cannot generalize to novel classes. We train both teacher180

and student mask heads with ground-truth masks of seen categories. For unseen

categories, the predictions from the teacher head are used as pseudo masks to

supervise the student head.

Given an arbitary object with class label l ∈ {1, 2, ..., C}, we denote the

ground-truth of the student head asG ∈ {0, 1}C×H×W , andGc ∈ {0, 1}H×W , c =185

1, 2, ..., C is the c-th channel of G. The values of all unrelated channels are zero:

Gc = 0H×W , c 6= l. (3)
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If the object is from seen categories, e.g., l ∈ S, Gc is the human-annotated

mask. If the object is from unseen categories, e.g., l /∈ S, Gc is assigned accord-

ing the output of teacher mask head:

Gc = σ(Mt), (4)

where σ is the ‘post-processing’ function which will be detailed in the next190

sub-section.

Consequently, the class-specific student head can be trained on all categories

and generalize well to the unseen categories.

4.2. Post-processing of pseudo masks

The teacher mask head Ft is only supervised by the mask-annotated cat-195

egories (seen) and is expected to generalize to novel categories (unseen). For

training sample i, the optimization objective for teacher mask head is:

Li
Mt

=

L(M i
t ,M

i) i ∈ S

0 i /∈ S,
(5)

where L(·) is a certain loss function, i.e., cross-entropy loss or GIoU loss, and

M i is the ground-truth mask of the sample.

Student mask head Fs has to be trained on all categories so that it can200

perform multi-classification during testing. For seen categories, we use the

ground-truth mask annotations as the supervision. For unseen categories, the

teacher mask head will generate pseudo masks for student mask head. Formally,

the training objective of student mask head is:

Li
Ms

=

L(M i
s,M

i) i ∈ S

L
(
M i

s, σ(M i
t )
)

i /∈ S,
(6)

where σ(·) is the post-processing function for Mt. We experiment 3 different205

post-processing functions:

1. threshold: σ(Mt) = Mt ≥ 0.5;
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2. threshold after CRF: σ(Mt) = CRF(Mt) ≥ 0.5;

3. threshold after interaction: σ(Mt) = (Mt+Ms)
2 ≥ 0.5.

Experimental results reveal that simply thresholding Ms achieves good results.210

Applying CRF [31] to Mt slightly improves the performance but brings signif-

icant computation. And interacting the two mask heads improves the perfor-

mance with neglectable computation overhead.

4.3. Application to Existing Methods

When applying our method to existing methods, e.g., OPMask [9], Mask215

R-CNN [1] and BoxInst [10]. We keep their original settings unchanged and

add the teacher-student architecture to the original models. During training,

the only additional loss introduced by our method is the segmentation loss of

student mask head, all other loss terms are the same with the baseline methods.

For example, with the Mask R-CNN baseline, there are mainly 3 loss terms: 1.220

the classification and localization losses from the box head; 2. the segmentation

loss from teacher mask head (only seen categories, cross-entropy loss), 3. the

segmentation loss from student mask head (both seen and unseen categories

(cross-entropy loss). The total loss is the sum of these loss terms with equal

contribution:225

L = Lbox
cls + Lbox

loc + Lseg
T + Lseg

S , (7)

where Lbox
cls , L

box
loc are the classification loss and localization loss in the bounding

box head, and Lseg
T , Lseg

S are segmentaion losses in teacher and student mask

heads. During inference, the teacher mask head is removed and only the

student mask head is preserved.

5. Experiments230

In this section, we introduce implementation details of our method and re-

port the experimental results. We evaluate the proposed method on the chal-

lenging COCO [12] dataset under partially supervised setting [7, 8]. The detailed

information about the experimental settings can be found in Sec. 5.1.
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5.1. Implementation details235

Experimental configurations. All the evaluated methods are implemented

based on the MMDetection [11] framework. For a fair comparison, all the evalu-

ated algorithms are trained on the training subset and evaluated on the testing

subset under the partially supervised setting. For our proposed method, we

use ResNet-50 with the feature pyramid network (FPN) as the backbone. In240

the inference phase, the network outputs top 512 high confident proposals for

each image. Then, we use the non-maximum suppression (NMS) with Jaccard

overlap of 0.5 and retain the top 150 high confident detections per image to

generate the final results. All the experiments are conducted on a machine with

8 NVIDIA V100 GPUs and a 2.80GHz Intel(R) Xeon(R) E5-1603 v4 processor.245

All the experiments are conducted on the COCO dataset [12]. There are

totally 80 categories in COCO dataset and they are splited into “voc” and “non-

voc” according to whether they are included by the PASCAL VOC dataset [32].

There are 20 categories in the voc subset and 60 categories in the nonvoc sub-

set. We mainly conduct experiments on these two settings: “nonvoc → voc”250

and “voc → nonvoc”. “nonvoc → voc” indicates that “nonvoc” categories are

regarded as seen and “voc” as unseen ”, and vice versa. We use images in

COCO-train2017 for training and those in COCO-val2017 for evaluation. Typ-

ical metrics for instance segmentation, i.e., mask AP, including mAP, AP50,

AP75, APS , APM and APL, are used for evaluation. The performance is only255

evaluated on the unseen categories.

The batch size is set to 16 in the training phase with each GPU processing

2 images in an iteration. The whole network is trained using the stochastic

gradient descent (SGD) algorithm with the 0.9 momentum and 1e−4 weight

decay. All experimental results are obtained using the 1x schedule under which260

models are trained for 12 epochs. The initial learning rate is set to 0.02 decreases

by 0.1 after training 8 and 11 epochs, respectively. We warm up the learning

rate for the first 500 iterations.

Partially supervised training details. During training, the teacher mask
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head is trained with only seen categories and the student mask head is trained265

with all instances with either ground-truth masks or pseudo-masks. If a pseudo

mask intersects with any mask of seen category, the intersection is marked as

background, and all areas outside the ground-truth bounding boxes are regarded

as background.

Class Activation Map. OPMask [9] uses the class-activation map (CAM) [33]

ROI

Conv×4

F ∈ RD×H×W

R256

Wcls

pcls

ploc

CAM

Figure 5: Illustration of the class activation map (CAM). Wcls is the classification weights,

pcls and ploc are the classification and localization predictions, respectively.

270

to enhance the localization ability of mask features. In our implementation, the

CAM is generated by applying the classification weight Wcls of the box head

to features before global average pooling. The generation of CAM is illustrated

in Fig. 5.

Let F ∈ R7×7×256 be the feature map of the last convolutional layer in the275

bounding-box head. Then the classification and regression predictions are:

pcls = GAP(F) ·Wcls + bcls

preg = GAP(F) ·Wreg + breg

(8)

where ‘GAP’ denotes the ‘global average pooling’ operation and Wcls ∈ RD×C is

the classification weight and b ∈ R80 the bias. Then we apply the classification

parameters to each position of feature F before ‘GAP’ to calculate the class-

activation map CAM ∈ RH,W
280

cami,j = Fi,j ·Wcls + bcls (9)
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5.2. Comparison with SOTA methods

We report quantitative comparisons of our method against Mask R-CNN [1]

and many recent state-of-the-art methods including: MaskX R-CNN [7], Mask

GrabCut [7], CPMask [8], OPMask [9], ShapeProp [6] and BoxInst [10]. We

report the performance under two-fold validation: 1) training on voc categories285

and testing on non-voc categories (denoted as voc→non-voc) and 2) training

on non-voc categories and testing on voc categories (denoted as non-voc→voc).

The voc→non-voc setting is much more challenging since there are more novel

categories. We also present the visual results in Fig. 6.

It can be seen in Tab. 1 that our method significantly improves the perfor-290

mance based on Mask R-CNN, and presents consistent performance improve-

ment on many strong baselines such as OPMask [9] and BoxInst [10]. The

voc→non-voc non-voc→voc

Backbone method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

R50-FPN

Mask R-CNN 19.2 36.4 18.4 11.5 23.3 24.4 23.9 42.9 23.5 11.6 24.3 33.7

Mask R-CNN + ours 21.6 37.1 19.1 12.7 16.5 33.1 25.1 43.4 23.9 11.7 25.9 34.3

MaskX R-CNN 23.7 43.1 23.5 12.4 27.6 32.9 28.9 52.2 28.6 12.1 29.0 40.6

Mask GrabCut 19.7 39.7 17.0 6.4 21.2 35.8 19.6 46.1 14.3 5.1 16.0 32.4

CPMask 28.8 46.1 30.6 12.4 33.1 43.4 34.9 61.1 35.0 14.9 34.3 48.3

OPMask 29.7 48.7 31.7 13.3 33.8 42.3 35.0 60.6 36.1 15.4 34.8 48.1

OPMask + ours 30.9 50.4 32.8 14.5 35.3 44.6 35.4 61.0 36.1 15.9 34.3 48.8

BoxInst 30.4 51.2 31.8 14.3 34.2 44.7 33.9 59.6 34.8 13.5 32.9 48.6

BoxInst + ours 31.4 50.6 32.8 14.7 35.1 45.8 34.4 60.3 34.6 14.6 33.3 47.7

Oracle 37.5 63.1 38.9 15.1 36.0 53.1 33.0 53.7 35.0 15.1 37.0 49.9

R101-FPN

OPMask 31.9 51.7 33.8 14.7 36.2 46.4 35.0 59.7 35.7 16.9 34.7 47.3

OPMask + ours 32.2 52.0 34.0 14.3 36.9 47.0 35.6 60.6 36.1 15.4 34.8 48.1

BoxInst 31.9 52.1 33.7 14.2 35.9 46.5 35.5 60.5 36.7 15.6 33.8 50.3

BoxInst+ours 32.6 52.4 33.7 14.0 36.1 46.9 35.9 61.0 36.9 15.6 34.0 50.6

Oracle 34.3 54.7 36.3 18.6 39.1 47.9 38.5 64.4 40.4 18.9 39.4 51.4

Table 1: Quantitative comparisons on the challenging COCO dataset. All the models are

trained with the standard 1x schedule on 8 GPUs. Our proposed method significantly out-

performs the baseline (Mask R-CNN) and present superior performance against strong com-

petitors.

performance improvements under the voc→non-voc setting are more significant

than the non-voc→voc setting, suggesting that the proposed method is espe-

cially suitable for partially supervised instance segmentation.295

The segmentation results in Fig. 6 show that our class-specific method
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Figure 6: Example instance segmentation results of the Mask-rcnn baseline and our method.

performs better than the class-agnostic foreground/background segmentation

method under different scenarios. Fig. 6 (a, c and d) demonstrate that our

method performs better with overlapped objects. In Fig. 6 (b), the girl has

low contrast against the background hence the foreground/background segmen-300

tation method cannot distinguish and segment well. While our class-specific

method learns to recognize humans from a all human images from the dataset

and can segment well under low contrast.

5.3. Experiments with overlapped objects

Since our method are designed to overcome the object overlapping prob-305

lem in class-agnostic segmentation, in this section, we quantitatively evaluate

the performance of our method against baseline on segmenting object that are

overlapping with other objects. Under the ‘voc→non-voc’ setting, we collect all

testing objects with overlap O ≥ 0.3 for evaluation. The object overlap was

defined in Eq. (1). The quantitative evaluation results of these ‘overlapped ob-310

jects’ are in Tab. 2, some segmentation results are shown in Fig. 7. Our method

presents clear advantages in distinguishing foreground objects from other over-

lapped objects.

5.4. Stronger teacher heads

Our teacher-student mask heads naturally benefits from stronger teacher315

mask heads since stronger teachers provide better supervision for the student.
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(a)

(b)

Figure 7: Segmentation results of a) vanilla Mask R-CNN (with mask-agnostic mask head)

and b) our method on overlapped objects.

Method AP AP50 AP75 APS APM APL

Mask R-CNN 16.2 31.2 15.4 9.9 14.3 24.4

Mask R-CNN + ours 17.3 44.1 15.8 10.4 14.9 32.1

OPMask 27.4 39.7 37.5 12.9 28.4 38.6

OPMask + ours 28.7 41.1 38.1 13.3 29.2 39.8

Table 2: Segmentation performance on overlapped objects.

Here we test two stronger teachers: deeper and higher-resolution. The

deeper teacher mask head has 12 convolutional layers (the original mask head

has 4), and the higher-resolution teacher head outputs 56×56 masks. According

Teacher voc→non-voc non-voc→voc

Original 21.6 25.1

High-res 22.1 25.7

Deeper 26.3 29.4

Table 3: Performance with stronger teacher heads. Higher-resolution teacher slightly im-

proves the performance, and deeper teacher improves the performance with significant margin.

to the results in Tab. 3, higher-resolution teacher head slightly improves the per-320

formance, and deeper teacher head significantly improve the performance with

a very clear margin. The results reveal that the resolution is not a bottleneck

in the partially-supervised instance segmentaion setting, while the generation

16



ability of identifying ‘foreground objects’ is the key to this task.

5.5. Experiments with various number of seen categories325

In addition to the voc v.s. non-voc split, we conduct experiments on various

number of seen/unseen splits to verify the effectiveness of our method. Starting

from the ‘voc→non-voc’ setting, we gradually add non-voc categories to seen

categories. We compare our method with the baseline methods Mask R-CNN [1]

and OPMask [9]. The results in Fig. 8 reveals that our method consistently

20 30 40 50 60
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28

30

32
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g 

m
AP

Mask R-CNN
Mask R-CNN + ours
OPMask
OPMask + ours

Figure 8: Performance with various seen/unseen splits. The horizontal axis indicates the

number of seen categories. Our proposed method consistently improve the performance of

two baseline methods.
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improves the baselines. The performance gap is even larger then there are more

unseen categories, demonstrating that our method’s superiority under extreme

partially-supervised conditions.

5.6. Ablation studies

In this section, we conduct ablation studies to verify the design choice in our335

method. All the experiments in this section are based on the ResNet-50 [34]

backbone trained on voc categories and tested on non-voc categories.

Effectiveness of Components. We first ablate the components of our method

including: 1) the teacher-student architecture, and 2) interaction between teacher

17



and student mask heads. Results in Tab. 4 demonstrate that our teacher-student

teacher-student post-processing voc→non-voc

7 7 19.2

X 7 20.2

X X 21.6

Table 4: Ablation study on the teacher-student architecture and post-processing of pseudo

masks.
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architecture improves the performance of the baseline method, and the post-

processing of pseudo-masks plays a positive role in our method.

Post-processings of pseudo masks. We test three difference post-processing

methods on the pseudo masks Ms: CRF1, threshold with 0.5 and interaction

between Mt and Ms. Results are in Tab. 5. CRF is a widely used post-process

voc→non-voc non-voc→voc Time (Hours)

CRF 31.4 34.5 36

thres=0.5 31.1 34.2 12

Interact 31.4 34.4 12

Table 5: The performance of three different post-processing methods. Experiments are

conducted using the BoxInst [10]+ResNet50 as baseline.
345

approach for many semantic segmentation methods such as DeepLab [35]. How-

ever, CRF is time-consuming and our experiments show that simply binariza-

tion with a threshold performs on par with CRF. And interacting Ms with Ms

achieves the best performance with neglectable computations.

6. Conclusion350

We observed that the coexistence of multiple objects in a single proposal box

is an obstacle to the performance of class agnostic models for partially super-

vised instance segmentation, since the model cannot distinguish the foreground

1Implemented with the pydensecrf https://github.com/lucasb-eyer/pydensecrf package

with default parameters.
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object from other objects in the proposal box. Motivated by the observation, we

proposed a class-specific method to segment specific object categories instead355

of a foreground object. We designed a teacher-student architecture consists of a

class-agnostic teacher head and a class-specific student head. The teacher head

is trained with ground-truth masks on seen categories and the student head

is trained with both seen and unseen categories with ground-truth or pseudo

masks. During testing, the student head can segment foreground objects from360

other objects by identifying the specific category. Extensive experiments on

the challenging COCO dataset demonstrate that our method consistently im-

proved the performance of several existing state-of-the-art methods on partially

supervised instance segmentation.
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