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We focus on partially supervised instance segmentation where only a subset of categories are mask-
annotated (seen) and the model is expected to generalize to unseen categories for which only box anno-
tations are provided to eliminate laborious mask annotations. Many recent studies train a class-agnostic
segmentation network to distinguish foreground areas in each proposal. However, class-agnostic models
behave poorly in complex contexts when the foreground object overlaps with other irreverent objects.
Identifying specific object categories is simpler than distinguishing foreground from background since
the definition of the foreground is ambiguous even for a human. However, training class-specific model
is unfeasible under the partially supervised setting since the mask annotations of unseen categories are
absent during training. To overcome this issue, we put forward a teacher-student architecture where
the teacher learns general yet comprehensive knowledge and the students, guided by the teacher, delve
deeper into specific categories. Concretely, the teacher learns to segment foreground from proposals and
the student is devoted to segmenting objects of specific categories. Extensive experiments on the chal-
lenging COCO dataset demonstrate our method consistently improve the performance of several recent
state-of-the-art methods for the partially setting. Especially, for overlapped objects, our method signifi-
cantly outperforms the competitors with a clear margin, demonstrating the superiority of our method.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Instance segmentation is a fundamental task in computer vision
and autonomous driving. In recent years, the performance of
instance segmentation has been improved to an unprecedented
level since the use of convolutional neural networks (CNNs) [1–
5]. However, CNNs require a large amount of accurate annotated
samples to achieve good performance and avoid overfitting. Anno-
tating object masks for instance segmentation is notoriously labo-
rious and the data becomes a bottleneck to the scalization of deep
instance segmentation models. Partially supervised instance seg-
mentation [6] aims at learning from a subset of mask-annotated
(seen) categories and then generalizing to novel (unseen) categories
which has only box-level annotations. Since it significantly reduces
the workload of data annotation and improvess the efficiency of
instance segmentation, partially supervised instance segmentation
has become a hot research topic in recent years [7,8,6,9,10].
Hu et al. [7] first introduces the prototype concept of partially
supervised instance segmentation. They first build a mapping from
box classification weights to mask segmentation weights. Then, a
model trained on a subset of categories can automatically generate
mask segmentation parameters on novel categories with the map-
ping function. Many follow-up works solve this problem with
class-agnostic segmentation networks. Under the class-agnostic
setting, categories degenerate to foreground and background so
that missing categories is no longer a problem during training.
CPMask [8] learns shared commonalities, e.g., boundary or pixel
affinities, that can be generalized from seen categories to unseen
categories. OPMask [9] uses the class activation maps from box
head to enhance localization capacity features for mask prediction.
Recently, Zhou et al. [6] propose to learn salient maps in an
instance and then iteratively propagate the salient maps to the
whole object with a message passing module.

The class-agnostic methods overcome the category-missing
problem by degenerating categories into foreground and back-
ground. However, the ‘foreground’ in class-agnostic models is
sometimes ambiguous, especially when there are overlapped
objects. For example, there are many objects overlapping with
other things – countable objects such as people, animals, tools, as
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shown in Fig. 1 (a). Under such condition, the model is difficult to
segment the correct areas, as shown in Fig. 1 (b). The main issue is
that the definition of ‘foreground’ is ambiguous and the class-
agnostic model cannot distinguish foreground object in the current
proposal from objects of other categories that are possibly fore-
ground in a different proposal. Recent empirical studies show that
the class-specific methods outperform class-agnostic methods
even on fully-supervised instance segmentation [11]. Directly
training a class-specific network is unfeasible since the missing
of categories. Hu et al. [7] train a ‘weight transfer function’ to
map box classification weight to segmentation weight. However,
the transferred segmentation weight presents unsatisfactory per-
formance on unseen categories.

In this paper, we propose a teacher-student architecture where
the teacher learns general yet comprehensive knowledge, and the
students delve deeper into specific areas. Concretely, we use a
class-agnostic head as the teacher to learn a general distinction
between foreground and background. Guided by the teacher, a
class-specific head is employed as the student to learn information
specific to each category. The teacher is trained with only seen cat-
egories and its predictions on unseen categories are used as super-
vision to a specific student according to the class label of the
instance. Experimental results on the challenging COCO [12] data-
set demonstrate that our method consistently outperforms many
recent state-of-the-art methods in terms of segmentation quality
on unseen categories. Our contributions are summarized as below:

1. We observe that class-agnostic methods for partially supervised
instance segmentation performs poorly due to ambiguous defi-
nition of foreground for overlapped objects. We analyze that
this is because these methods cannot distinguish the main
object from other objects in the same bounding box.

2. We propose a teacher-student architecture to perform ‘general
to class-specific’ knowledge transfer. The teacher learns general
and comprehensive knowledge about foreground objects while
the students in contrast delve deeper into specific categories,
leading to easier learning and better performance.

3. We apply the proposed method to many recent state-of-the-art
approaches to partially supervised instance segmentation and
observe consistent performance gain on the challenging COCO
dataset.

2. Related work

Instance Segmentation. Instance segmentation is a classical
problem in computer vision. Roughly, instance segmentation
methods can be divided into two categories: 1) top-down detection
based and 2) bottom-up grouping-based methods. Top-down
instance segmentation methods [1,13,3,14,15,3] extend the object
detection framework, e.g., faster r-cnn [16], with a mask prediction
module. Mask R-CNN [1] extends the Faster R-CNN [16] with a FCN
[17] branch to segment object area in object bounding boxes. FCIS
[3] introduces position-sensetive representations for mask seg-
mentation. Liu et al. [15] add bottom-up path augmentation in
addition to the top-down path in FPN [18] to enrich feature repre-
sentations. Mask Scoring R-CNN [13] calibrates the misalignment
between mask quality and mask score by introducing a submodule
to explicitly predict quality scores. Shang et al. [4] ultlize the
instance-level contexts to enhance feature representations for
instance segmentation. Huang et al. [19] use the peak response
map from a pretrained classification network for box-supervised
instance segmentation. Yang et al. [20] propose a one-stage and
anchor-free framework for instance segmentation based on bound-
ary point representations. Xiang et al. [21] improve the segmenta-
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tion quality with class-specific semantic feature and instance-
specific attributes.

On the other hand, bottom-up instance segmentation methods
first obtain a pixel-wise semantic segmentation mask over an
image and then group pixels into individual instances. Zhang
et al. [22,23] propose to assign instance labels based on local
patches and integrate the local results with an MRF. [24] proposes
the deep watershed algorithm to segmentation pixels into
instances. [25] learns bound-aware representations. Recently,
there are many single-stage instance segmentation methods
achieving promising performance in both accuracy and speed.
InstanceFCN [26] and FCIS [3] use a fully-convolutional network
[17] to produce instance-sensitive score maps which contain the
relative positions for each objects instances, and then apply an
assembling module to output object instances. PolarMask [27] uses
rays at constant angle intervals and then describes the contour of
an object using the distance between the center and the edge of
the object. SOLO [28] assigns categories to each pixel within an
instance according to the instance’s location, leading to a simple
and fast method for instance segmentation with strong perfor-
mance. Generally, bottom-up methods are faster than top-down
methods, but with the sacrifice of performance.

Partially supervised Instance Segmentation. Generalizing
instance segmentation models to novel categories with limited or
weak annotations are useful and challenging. In the partially
supervised instance segmentaion setting, only a subset object cat-
egories are mask-annotated, all other categories have only box
annotations. The model is trained on mask-annotated images and
tested on box-annotated images.

For the past few years, several achievements have been made for
partially supervised instance segmentation [7–9,6]. Hu et al. [7] first
introduced the concept of ‘partially supervised instance segmenta-
tion. Their method builds up amapping function between the param-
eters of the box head and the mask head and therefore generates
mask head parameters for unseen categories with box head weights.
CPMask [8] learns the common low-level clues, e.g., edge and pixel
affiliations, from seen categories to enhance performance on unseen
categories. OPMask [9] employs the class activation map (CAM) from
the box head as a coarse localization for object segmentation inside
proposals. Recently, [6] propose the ‘ShapeProp’ that activates the
salient areas in a bounding box and then propagates the area to
the whole instance using an iterative message passing module. [29]
suggests that using extremely deep mask heads can significantly
improve the performance of partially-supervised instance segmenta-
tion. Wang et al. [30] use pixel-wise contrast learning to improve the
feature representations. Most of them have employed the class-
agnostic architecture that trains foreground/background segmenta-
tion network on seen categories and then transfer to unseen cate-
gories [8,9,6]. However, it is challenging to perform binary
segmentation under complex contexts where objects are heavily
overlapped with others and the background is noisy.

3. Observation on class-agnostic segmentation

3.1. Performance w.r.t overlaps

Here we quantitatively analyze the impact of object overlaps on
the performance of class-agnostic segmentation. We experiment
with Mask R-CNN [1] on the COCO [12] dataset. We train a class-
agnostic mask head with voc categories of the training set, and
then test with non-voc categories from the testing set.

We define the overlap of object i as:

Oi ¼ max
j2I;j–i

bi \ sj
bi

; ð1Þ



Fig. 1. (a) standalone rackets and (b) rackets overlapped with human body. Class-agnostic partially supervised instance segmentation model performs better on standalone
objects than on overlapped objects.
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where b; s are the bounding box and segmentation mask of an
object, \ denotes the intersection between two areas. Here we
use the intersection between bi and sj because the mask annotations
of two overlapping objects may not intersect. The definition in Eq. 1
represents the degree of an object being overlapped by other
objects. Based on the definition in Eq. 1, we calculate the segmenta-
tion performance w.r.t the overlaps.

In Fig. 2, horizontal axis xi means the performance of all objects
with overlap xi�1 < O 6 xi. The results clearly demonstrate that the
class-agnostic model performs better on stand-alone objects and
the performance degrades on overlapped objects.
3.2. Attribution of mis-segmentations

Now we analyze the attribution of mis-segmentations for a
class-specific model and a class-agnostic model. We count the false
positive pixels on the testing set and attribute them into 3 different
cases: background, seen objects and unseen objects. We use the
Mask-rcnn [1] and COCO dataset [12] for both fully-supervised
and partially-supervised experiments. Under the fully-supervised
setting, a class-specific mask head is used. For partially-
supervised setting, a class-agnostic head is used and the model is
Fig. 2. Segmentation performance w.r.t. object overlaps. The
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supervised with pseudo masks generated by itself on unseen cate-
gories. The statistics are in Fig. 3.

As shown in Fig. 3, with a class-specific head, most of the false
positives occur on the background areas that do not belong to any
object. As for the class-agnostic head, more than half of the false
positives are on objects. The results suggest that the class-
agnostic head has difficulty in recognizing foreground objects from
irreverent objects. This motivates us to develop a class-specific
method for partially supervised instance segmentation (See Fig. 4).
4. Methodology

In this section, we introduce the proposed method for partially
supervised instance segmentation.

We denote the set of categories in a dataset with C, and C ¼ jCj
is the number of classes. We denote S as the seen categories that
are mask-annotated, and C n S is unseen categories without mask
annotations.

4.1. Teacher and student mask heads

Our method consists of two mask heads: the teacher mask head
and the student head. The teacher head performs binary segmenta-
larger the object overlaps, the lower the performance.



Fig. 3. Attribution of false positive of fully supervised (left) and partially supervised (right) Mask R-CNN.

Fig. 4. The overall network architecture of our proposed method. The teacher mask head (Mt , bottom) and the student mask head (Ms , top) share the same ROI features. Mt is
supervised with seen categories and produces pseudo masks on the unseen categories as the supervision of Ms . The box branch (top-right) is supervised by samples of all
categories.
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tion in each proposal to distinguish foreground and background
areas. During training, the teacher mask head is trained only on
objects of seen categories and b) the student mask head performs
multi-classification to assign each pixel to a specific category.

Let x 2 RD�H�W be the ROI features and Ft ; Fs be the teacher and
student mask heads, where D is the dimensionality and H �W are
spatial size. Following many previous works [1,7,13], Ft ; Fs consist
of four convolutions. The outputs are Mt 2 RH�W and Ms 2 RC�H�W

are:

Mt ¼ FtðxÞ
Ms ¼ FsðxÞ;

ð2Þ

where C is the number of categories, e.g., C ¼ 80 for COCO dataset.
Let Wt 2 RD�1;Ws 2 RD�C be the weights of the last convolu-

tional layers in Ft ; Fs, respectively. Wt 2 RD�1 can be trained only
with seen categories and test with unseen categories. However,
only jSj of C kernels in Ws 2 RD�C will be updated during training
under the partially supervised setting, meaning that class-specific
models cannot generalize to novel classes. We train both teacher
and student mask heads with ground-truth masks of seen cate-
gories. For unseen categories, the predictions from the teacher head
are used as pseudo masks to supervise the student head.

Given an arbitary object with class label l 2 f1;2; . . . ;Cg, we

denote the ground-truth of the student head as G 2 f0;1gC�H�W ,

and Gc 2 f0;1gH�W
; c ¼ 1;2; . . . ;C is the c-th channel of G. The val-

ues of all unrelated channels are zero:
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Gc ¼ 0H�W ; c – l: ð3Þ
If the object is from seen categories, e.g., l 2 S, Gc is the human-

annotated mask. If the object is from unseen categories, e.g., l R S,
Gc is assigned according the output of teacher mask head:

Gc ¼ rðMtÞ; ð4Þ
where r is the ‘post-processing’ function which will be detailed in
the next sub-section.

Consequently, the class-specific student head can be trained on
all categories and generalize well to the unseen categories.

4.2. Post-processing of pseudo masks

The teacher mask head Ft is only supervised by the mask-
annotated categories (seen) and is expected to generalize to novel
categories (unseen). For training sample i, the optimization objec-
tive for teacher mask head is:

Li
Mt

¼ LðMi
t ;M

iÞ i 2 S

0 i R S;

(
ð5Þ

where Lð�Þ is a certain loss function, i.e., cross-entropy loss or GIoU

loss, and Mi is the ground-truth mask of the sample.
Student mask head Fs has to be trained on all categories so that

it can perform multi-classification during testing. For seen cate-
gories, we use the ground-truth mask annotations as the supervi-
sion. For unseen categories, the teacher mask head will generate
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pseudo masks for student mask head. Formally, the training objec-
tive of student mask head is:

Li
Ms

¼
LðMi

s;M
iÞ i 2 S

L Mi
s;rðMi

tÞ
� �

i R S;

8<
: ð6Þ

where rð�Þ is the post-processing function for Mt . We experiment 3
different post-processing functions:

1. threshold: rðMtÞ ¼ Mt P 0:5;
2. threshold after CRF: rðMtÞ ¼ CRFðMtÞ P 0:5;
3. threshold after interaction: rðMtÞ ¼ ðMtþMsÞ

2 P 0:5.

Experimental results reveal that simply thresholding Ms achieves
good results. Applying CRF [31] to Mt slightly improves the perfor-
mance but brings significant computation. And interacting the two
mask heads improves the performance with neglectable computa-
tion overhead.

4.3. Application to existing methods

When applying our method to existing methods, e.g., OPMask
[9], Mask R-CNN [1] and BoxInst [10]. We keep their original set-
tings unchanged and add the teacher-student architecture to the
original models. During training, the only additional loss intro-
duced by our method is the segmentation loss of student mask
head, all other loss terms are the same with the baseline methods.
For example, with the Mask R-CNN baseline, there are mainly 3
loss terms: 1. the classification and localization losses from the
box head; 2. the segmentation loss from teacher mask head (only
seen categories, cross-entropy loss), 3. the segmentation loss from
student mask head (both seen and unseen categories (cross-entropy
loss). The total loss is the sum of these loss terms with equal
contribution:

L ¼ Lboxcls þ Lboxloc þ LsegT þ LsegS ; ð7Þ

where Lboxcls ; L
box
loc are the classification loss and localization loss in the

bounding box head, and LsegT ; LsegS are segmentation losses in teacher
and student mask heads. During inference, the teacher mask head is
removed and only the student mask head is preserved.

5. Experiments

In this section, we introduce implementation details of our
method and report the experimental results. We evaluate the pro-
posed method on the challenging COCO [12] dataset under par-
tially supervised setting [7,8]. The detailed information about the
experimental settings can be found in Section 5.1.

5.1. Implementation details

Experimental configurations. All the evaluated methods are
implemented based on the MMDetection [11] framework. For a fair
comparison, all the evaluated algorithms are trained on the train-
ing subset and evaluated on the testing subset under the partially
supervised setting. For our proposed method, we use ResNet-50
with the feature pyramid network (FPN) as the backbone. In the
inference phase, the network outputs top 512 high confident pro-
posals for each image. Then, we use the non-maximum suppres-
sion (NMS) with Jaccard overlap of 0.5 and retain the top 150
high confident detections per image to generate the final results.
All the experiments are conducted on a machine with 8 NVIDIA
V100 GPUs and a 2.80 GHz Intel(R) Xeon(R) E5-1603 v4 processor.

All the experiments are conducted on the COCO dataset [12].
There are totally 80 categories in COCO dataset and they are splited
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into ‘‘voc” and ‘‘nonvoc” according to whether they are included by
the PASCAL VOC dataset [32]. There are 20 categories in the voc
subset and 60 categories in the nonvoc subset. We mainly conduct
experiments on these two settings: ‘‘nonvoc! voc” and ‘‘voc! non-
voc”. ‘‘nonvoc ! voc” indicates that ‘‘nonvoc” categories are
regarded as seen and ‘‘voc” as unseen”, and vice versa. We use
images in COCO-train2017 for training and those in COCO-
val2017 for evaluation. Typical metrics for instance segmentation,
i.e., mask AP, including mAP, AP50, AP75, APS, APM and APL, are used
for evaluation. The performance is only evaluated on the unseen
categories.

The batch size is set to 16 in the training phase with each GPU
processing 2 images in an iteration. The whole network is trained
using the stochastic gradient descent (SGD) algorithm with the
0.9 momentum and 1e�4 weight decay. All experimental results
are obtained using the 1x schedule under which models are trained
for 12 epochs. The initial learning rate is set to 0.02 decreases by
0.1 after training 8 and 11 epochs, respectively. We warm up the
learning rate for the first 500 iterations.

Partially supervised training details. During training, the tea-
cher mask head is trained with only seen categories and the stu-
dent mask head is trained with all instances with either ground-
truth masks or pseudo-masks. If a pseudo mask intersects with
any mask of seen category, the intersection is marked as back-
ground, and all areas outside the ground-truth bounding boxes
are regarded as background.

Class Activation Map. OPMask [9] uses the class-activation
map (CAM) [33] to enhance the localization ability of mask fea-
tures. In our implementation, the CAM is generated by applying
the classification weight Wcls of the box head to features before
global average pooling. The generation of CAM is illustrated in
Fig. 5.

Let F 2 R7�7�256 be the feature map of the last convolutional
layer in the bounding-box head. Then the classification and regres-
sion predictions are:

pcls ¼ GAPðFÞ �Wcls þ bcls

preg ¼ GAPðFÞ �Wreg þ breg
ð8Þ

where ‘GAP’ denotes the ‘global average pooling’ operation and
Wcls 2 RD�C is the classification weight and b 2 R80 the bias. Then
we apply the classification parameters to each position of feature
F before ‘GAP’ to calculate the class-activation map CAM 2 RH;W

cami;j ¼ Fi;j �Wcls þ bcls ð9Þ
5.2. Comparison with SOTA methods

We report quantitative comparisons of our method against
Mask R-CNN [1] and many recent state-of-the-art methods includ-

ing: MaskX R-CNN [7], Mask GrabCut [7], CPMask [8], OPMask [9],
ShapeProp [6] and BoxInst [10]. We report the performance under
twofold validation: 1) training on voc categories and testing on
non-voc categories (denoted as voc ! non-voc) and 2) training
on non-voc categories and testing on voc categories (denoted as
non-voc! voc). The voc! non-voc setting is muchmore challeng-
ing since there are more novel categories. We also present the
visual results in Fig. 6.

It can be seen in Table 1 that our method significantly improves
the performance based on Mask R-CNN, and presents consistent
performance improvement on many strong baselines such as
OPMask [9] and BoxInst [10]. The performance improvements
under the voc ! non-voc setting are more significant than the
non-voc ! voc setting, suggesting that the proposed method is
especially suitable for partially supervised instance segmentation.



Fig. 5. Illustration of the class activation map (CAM). Wcls is the classification weights, pcls and ploc are the classification and localization predictions, respectively.

Fig. 6. Example instance segmentation results of the Mask-rcnn baseline and our method.

Table 1
Quantitative comparisons on the challenging COCO dataset. All the models are trained with the standard 1x schedule on 8 GPUs. Our proposed method significantly outperforms
the baseline (Mask R-CNN) and present superior performance against strong competitors.

voc ! non-voc non-voc ! voc

Backbone method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

R50-FPN Mask R-CNN 19.2 36.4 18.4 11.5 23.3 24.4 23.9 42.9 23.5 11.6 24.3 33.7
Mask R-CNN + ours 21.6 37.1 19.1 12.7 16.5 33.1 25.1 43.4 23.9 11.7 25.9 34.3

MaskX R-CNN 23.7 43.1 23.5 12.4 27.6 32.9 28.9 52.2 28.6 12.1 29.0 40.6

Mask GrabCut 19.7 39.7 17.0 6.4 21.2 35.8 19.6 46.1 14.3 5.1 16.0 32.4
CPMask 28.8 46.1 30.6 12.4 33.1 43.4 34.9 61.1 35.0 14.9 34.3 48.3
OPMask 29.7 48.7 31.7 13.3 33.8 42.3 35.0 60.6 36.1 15.4 34.8 48.1
OPMask + ours 30.9 50.4 32.8 14.5 35.3 44.6 35.4 61.0 36.1 15.9 34.3 48.8
BoxInst 30.4 51.2 31.8 14.3 34.2 44.7 33.9 59.6 34.8 13.5 32.9 48.6
BoxInst + ours 31.4 50.6 32.8 14.7 35.1 45.8 34.4 60.3 34.6 14.6 33.3 47.7
Oracle 37.5 63.1 38.9 15.1 36.0 53.1 33.0 53.7 35.0 15.1 37.0 49.9

R101-FPN OPMask 31.9 51.7 33.8 14.7 36.2 46.4 35.0 59.7 35.7 16.9 34.7 47.3
OPMask + ours 32.2 52.0 34.0 14.3 36.9 47.0 35.6 60.6 36.1 15.4 34.8 48.1
BoxInst 31.9 52.1 33.7 14.2 35.9 46.5 35.5 60.5 36.7 15.6 33.8 50.3
BoxInst + ours 32.6 52.4 33.7 14.0 36.1 46.9 35.9 61.0 36.9 15.6 34.0 50.6
Oracle 34.3 54.7 36.3 18.6 39.1 47.9 38.5 64.4 40.4 18.9 39.4 51.4
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The segmentation results in Fig. 6 show that our class-specific
method performs better than the class-agnostic foreground/back-
ground segmentation method under different scenarios. Fig. 6 (a,
431
c and d) demonstrate that our method performs better with over-
lapped objects. In Fig. 6 (b), the girl has low contrast against the
background hence the foreground/background segmentation



Table 3
Performance with stronger teacher heads. Higher-resolution teacher slightly
improves the performance, and deeper teacher improves the performance with
significant margin.
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method cannot distinguish and segment well. While our class-
specific method learns to recognize humans from a all human
images from the dataset and can segment well under low contrast.
Teacher voc ! non-voc non-voc ! voc

Original 21.6 25.1
High-res 22.1 25.7
Deeper 26.3 29.4
5.3. Experiments with overlapped objects

Since our method are designed to overcome the object overlap-
ping problem in class-agnostic segmentation, in this section, we
quantitatively evaluate the performance of our method against
baseline on segmenting object that are overlapping with other
objects. Under the ‘voc ! non-voc’ setting, we collect all testing
objects with overlap O P 0:3 for evaluation. The object overlap
was defined in Eq. 1. The quantitative evaluation results of these
‘overlapped objects’ are in Table 2s, some segmentation results
are shown in Fig. 7. Our method presents clear advantages in dis-
tinguishing foreground objects from other overlapped objects.
5.4. Stronger teacher heads

Our teacher-student mask heads naturally benefits from stron-
ger teacher mask heads since stronger teachers provide better
supervision for the student. Here we test two stronger teachers:
deeperand higher-resolution. The deeper teacher mask head has
12 convolutional layers (the original mask head has 4), and the
higher-resolution teacher head outputs 56� 56 masks. According
to the results in Table 3, higher-resolution teacher head slightly
improves the performance, and deeper teacher head significantly
improve the performance with a very clear margin. The results
reveal that the resolution is not a bottleneck in the partially-
supervised instance segmentation setting, while the generation
ability of identifying ‘foreground objects’ is the key to this task.
Table 2
Segmentation performance on overlapped objects.

Method AP AP50

Mask R-CNN 16.2 31.2
Mask R-CNN + ours 17.3 44.1
OPMask 27.4 39.7
OPMask + ours 28.7 41.1

Fig. 7. Segmentation results of a) vanilla Mask R-CNN (with mask-a
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5.5. Experiments with various number of seen categories

In addition to the voc v.s. non-voc split, we conduct experi-
ments on various number of seen/unseen splits to verify the effec-
tiveness of our method. Starting from the ‘voc ! non-voc’ setting,
we gradually add non-voc categories to seen categories. We com-
pare our method with the baseline methods Mask R-CNN [1] and
OPMask [9]. The results in Eq. 8 reveals that our method consis-
tently improves the baselines. The performance gap is even larger
then there are more unseen categories, demonstrating that our
method’s superiority under extreme partially-supervised
conditions.
5.6. Ablation studies

In this section, we conduct ablation studies to verify the design
choice in our method. All the experiments in this section are based
on the ResNet-50 [34] backbone trained on voc categories and
tested on non-voc categories.

Effectiveness of Components. We first ablate the components
of our method including: 1) the teacher-student architecture, and
2) interaction between teacher and student mask heads. Results
AP75 APS APM APL

15.4 9.9 14.3 24.4
15.8 10.4 14.9 32.1
37.5 12.9 28.4 38.6
38.1 13.3 29.2 39.8

gnostic mask head) and b) our method on overlapped objects.



Fig. 8. Performance with various seen/unseen splits. The horizontal axis indicates
the number of seen categories. Our proposed method consistently improve the
performance of two baseline methods.

Table 4
Ablation study on the teacher-student architecture and post-processing of pseudo
masks.

teacher-student post-processing voc ! non-voc

X X 19.2
U X 20.2
U U 21.6

Table 5
The performance of three different post-processing methods. Experiments are
conducted using the BoxInst [10]+ResNet50 as baseline.

voc ! non-voc non-voc ! voc Time (hours)

CRF 31.4 34.5 36
thres = 0.5 31.1 34.2 12
Interact 31.4 34.4 12
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in Table 4 demonstrate that our teacher-student architecture
improves the performance of the baseline method, and the post-
processing of pseudo-masks plays a positive role in our method.

Post-processings of pseudo masks. We test three difference
post-processing methods on the pseudo masks Ms: CRF1, threshold
with 0.5 and interaction between Mt and Ms. Results are in Table 5.
CRF is a widely used post-process approach for many semantic seg-
mentation methods such as DeepLab [35]. However, CRF is time-
consuming and our experiments show that simply binarization with
a threshold performs on par with CRF. And interacting Ms with Ms

achieves the best performance with neglectable computations.
6. Conclusion

We observed that the coexistence of multiple objects in a single
proposal box is an obstacle to the performance of class agnostic
models for partially supervised instance segmentation, since the
model cannot distinguish the foreground object from other objects
in the proposal box. Motivated by the observation, we proposed a
class-specific method to segment specific object categories instead
of a foreground object. We designed a teacher-student architecture
consists of a class-agnostic teacher head and a class-specific stu-
dent head. The teacher head is trained with ground-truth masks
on seen categories and the student head is trained with both seen
and unseen categories with ground-truth or pseudo masks. During
testing, the student head can segment foreground objects from
other objects by identifying the specific category. Extensive exper-
433
iments on the challenging COCO dataset demonstrate that our
method consistently improved the performance of several existing
state-of-the-art methods on partially supervised instance
segmentation.
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